4,575 research outputs found

    Electron transport through a quantum interferometer with side-coupled quantum dots: Green's function approach

    Full text link
    We study electron transport through a quantum interferometer with side-coupled quantum dots. The interferometer, threaded by a magnetic flux Ï•\phi, is attached symmetrically to two semi-infinite one-dimensional metallic electrodes. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics. Our results predict that under certain conditions this particular geometry exhibits anti-resonant states. These states are specific to the interferometric nature of the scattering and do not occur in conventional one-dimensional scattering problems of potential barriers. Most importantly we show that, such a simple geometric model can also be used as a classical XOR gate, where the two gate voltages, viz, VaV_a and VbV_b, are applied, respectively, in the two dots those are treated as the two inputs of the XOR gate. For Ï•=Ï•0/2\phi=\phi_0/2 (Ï•0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if one, and only one, of the inputs to the gate is high (1), while if both inputs are low (0) or both are high (1), a low output current (0) appears. It clearly demonstrates the XOR gate behavior and this aspect may be utilized in designing the electronic logic gate.Comment: 8 pages, 5 figure

    NAND gate response in a mesoscopic ring: An exact study

    Full text link
    NAND gate response in a mesoscopic ring threaded with a magnetic flux Ï•\phi is investigated by using Green's function formalism. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, VaV_a and VbV_b, are applied in one arm of the ring those are treated as the two inputs of the NAND gate. We use a simple tight-binding model to describe the system and numerically compute the conductance-energy and current-voltage characteristics as functions of the gate voltages, ring-to-electrode coupling strength and magnetic flux. Our theoretical study shows that, for Ï•=Ï•0/2\phi=\phi_0/2 (Ï•0=ch/e\phi_0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears if one or both the inputs to the gate are low (0), while if both the inputs to the gate are high (1), a low output current (0) appears. It clearly exhibits the NAND gate behavior and this feature may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    XOR gate response in a mesoscopic ring with embedded quantum dots

    Full text link
    We address XOR gate response in a mesoscopic ring threaded by a magnetic flux Ï•\phi. The ring, composed of identical quantum dots, is symmetrically attached to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied, respectively, in each arm of the ring which are treated as the two inputs of the XOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-electrodes coupling strengths, magnetic flux and gate voltages. Quite interestingly it is observed that, for Ï•=Ï•0/2\phi=\phi_0/2 (Ï•0=ch/e\phi_0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears if one, and only one, of the inputs to the gate is high (1), while if both inputs are low (0) or both are high (1), a low output current (0) appears. It clearly demonstrates the XOR behavior and this aspect may be utilized in designing the electronic logic gate.Comment: 7 pages, 5 figure

    NOR gate response in a double quantum ring: An exact result

    Full text link
    NOR gate response in a double quantum ring, where each ring is threaded by a magnetic flux Ï•\phi, is investigated. The double quantum ring is sandwiched symmetrically between two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, VaV_a and VbV_b, are applied, respectively, in lower arms of the two rings those are treated as the two inputs of the NOR gate. A simple tight-binding model is used to describe the system and all the calculations are done through the Green's function formalism. Here we exactly calculate the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our numerical study predicts that, for a typical value of the magnetic flux Ï•=Ï•0/2\phi=\phi_0/2 (Ï•0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the inputs to the gate are low (0), while if one or both are high (1), a low output current (0) results. It clearly demonstrates the NOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    Electron transport in a double quantum ring: Evidence of an AND gate

    Full text link
    We explore AND gate response in a double quantum ring where each ring is threaded by a magnetic flux Ï•\phi. The double quantum ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, VaV_a and VbV_b, are applied, respectively, in the lower arms of the two rings which are treated as two inputs of the AND gate. The system is described in the tight-binding framework and the calculations are done using the Green's function formalism. Here we numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our study suggests that, for a typical value of the magnetic flux Ï•=Ï•0/2\phi=\phi_0/2 (Ï•0=ch/e\phi_0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1), while if neither or only one input to the gate is high (1), a low output current (0) results. It clearly demonstrates the AND gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    Quantum transport through molecular wires

    Full text link
    We explore electron transport properties in molecular wires made of heterocyclic molecules (pyrrole, furan and thiophene) by using the Green's function technique. Parametric calculations are given based on the tight-binding model to describe the electron transport in these wires. It is observed that the transport properties are significantly influenced by (a) the heteroatoms in the heterocyclic molecules and (b) the molecule-to-electrodes coupling strength. Conductance (gg) shows sharp resonance peaks associated with the molecular energy levels in the limit of weak molecular coupling, while they get broadened in the strong molecular coupling limit. These resonances get shifted with the change of the heteroatoms in these heterocyclic molecules. All the essential features of the electron transfer through these molecular wires become much more clearly visible from the study of our current-voltage (II-VV) characteristics, and they provide several key informations in the study of molecular transport.Comment: 8 pages, 4 figure

    Electron transport through multilevel quantum dot

    Full text link
    Quantum transport properties through some multilevel quantum dots sandwiched between two metallic contacts are investigated by the use of Green's function technique. Here we do parametric calculations, based on the tight-binding model, to study the transport properties through such bridge systems. The electron transport properties are significantly influenced by (a) number of quantized energy levels in the dots, (b) dot-to-electrode coupling strength, (c) location of the equilibrium Fermi energy EFE_F and (d) surface disorder. In the limit of weak-coupling, the conductance (gg) shows sharp resonant peaks associated with the quantized energy levels in the dots, while, they get substantial broadening in the strong-coupling limit. The behavior of the electron transfer through these systems becomes much more clearly visible from our study of current-voltage (II-VV) characteristics. In this context we also describe the noise power of current fluctuations (SS) and determine the Fano factor (FF) which provides an important information about the electron correlation among the charge carriers. Finally, we explore a novel transport phenomenon by studying the surface disorder effect in which the current amplitude increases with the increase of the surface disorder strength in the strong disorder regime, while, the amplitude decreases in the limit of weak disorder. Such an anomalous behavior is completely opposite to that of bulk disordered system where the current amplitude always decreases with the disorder strength. It is also observed that the current amplitude strongly depends on the system size which reveals the finite quantum size effect.Comment: 12 pages, 7 figure
    • …
    corecore